Возможность создавать планы и использовать СРЦ восстановлена.
Мобильный сайт m.last-man.org восстановлен
Вход через Facebook восстановлен

Проблема утомления и её значение для спортивной практики.

1.Утомление и его проявление.

2.Теории о физиологической природе утомления:

2.1 Развитие охранительного торможения.

2.2 Нарушение функций вегетативных и регуляторных систем организма.

2.3 Исчерпание энергетических резервов.

2.4 Образование и накопление в организме лактата.

2.5 Повреждение биологических мембран свободнорадикальным окислением.

3. Способы временного преодоления утомления.

1.

Процесс утомления - это совокупность изменений, происходящих в различных органах, системах и организме в целом, в период выполнения физической работы и приводящих в конце концов к невозможности ее продолжения. Состояние утомления характеризуется вызванным работой временным снижением работоспособности, которое проявляется в субъективном ощущении усталости. В состоянии утомления человек не способен поддерживать требуемый уровень интенсивности и (или) качества (техники выполнения) работы или вынужден отказаться от ее продолжения. Вспомним, что молочная кислота — промежуточный продукт гликолиза. Хотя многие считают, что именно она — главная причина утомления и изнеможения при всех видах физических нагрузок, молочная кислота аккумулируется в мышечном волокне только во время кратковременного мышечного усилия высокой интенсивности. У марафонцев, например, уровни молочной кислоты в конце забега могут быть почти такими, как в состоянии покоя, несмотря на крайнюю степень утомления. Как уже отмечалось, возникновение утомления у марафонцев обусловлено недостаточным энергетическим обеспечением, а не избытком молочной кислоты. У спринтеров (бегунов, пловцов, велосипедистов) во время соревнования наблюдается быстрая аккумуляция молочной кислоты. Однако наличие молочной кислоты само по себе не является причиной утомления. Если она не выводится, то расщепляется, превращаясь в лактат, и ведет к аккумуляции ионов водорода, что, в свою очередь, приводит к подкислению мышц и в конечном итоге — к ацидозу. Виды спорта короткой продолжительности и высокой интенсивности мышечной деятельности, такие, как бег и плавание на спринтерские дистанции, во многом зависят от интенсивности гликолиза. У спортсменов, занимающихся этими видами спорта, образуется большое количество лактата и Н+ в мышцах. К счастью, клетки и жидкости организма имеют буферные системы, такие, как бикарбонат (НСО3~), которые сводят к минимуму отрицательное воздействие Н+. Если бы не было таких буферов, Н+ привел бы к понижению рН до 1,5 и нарушению жизнедеятельности клетки. Благодаря буферным системам организма концентрации Н+ остаются невысокими даже при наиболее изнурительных физических нагрузках. Поэтому мышечный рН понижается от показателя, характерного для состояния покоя — 7,1 до 6,6 — 6,4 в состоянии изнеможения. Однако подобные изменения рН отрицательно влияют на образование энергии и мышечные сокращения. Внутриклеточный рН ниже 6,9 тормозит действие фосфофруктокиназы — важного гликолитического фермента, замедляющего интенсивность гликолиза и образование АТФ. При рН 6,4 влияние Н+ прекращает дальнейшее расщепление гликогена, вызывая резкое снижение уровня АТФ и в конечном итоге — утомление. Кроме того, Н+ может вытеснять кальций из волокон, вмешиваясь в процесс сочетания поперечных мостиков актина и миозина и снижая сократительную силу мышц. Многие ученые считают, что низкий мышечный рН является главным фактором, лимитирующим мышечную деятельность, а также основной причиной возникновения утомления при кратковременных максимальных физических нагрузках.

Рис. 5.21. Изменения рН мышцы во время нагрузки спринтерского характера и восстановления.

Как видно из рис. 5.21, восстановление после изнурительной физической нагрузки спринтерского характера уровня мышечного рН происходит в течение 30 — 35 мин. Даже при восстановившемся уровне рН концентрации лактата в крови и мышцах могут оставаться повышенными. Однако спортсмен может продолжать выполнять упражнение с относительно высокой интенсивностью даже при показателе мышечного рН ниже 7,0 и уровне лактата крови выше 6—7 ммоль-л'1, т.е. в 4 — 5 раз превышающем уровень в состоянии покоя. В последнее время некоторые тренеры и спортивные физиологи пытаются на основании измерения показателей лактата крови определить интенсивность и объем тренировок, обеспечивающих оптимальные тренировочные стимулы. Такие измерения позволяют определить интенсивность тренировок, однако они вряд ли могут охарактеризовать анаэробные процессы или степень ацидоза мышц. Поскольку лактат и Н+ образуются в мышцах, диффундируя из клеток во внеклеточные жидкости организма, затем транспортируясь к другим участкам тела для последующего обмена. Следовательно, показатели лактата крови зависят от интенсивности его образования, диффузии и окисления. На эти процессы может влиять множество факторов, поэтому целесообразность использования показателей лактата для определения объема и интенсивности тренировочных занятий несколько спорна. 

2.

Механизмы возникновения утомления многообразны и зависят в первую очередь от характера выполняемой работы, ее интенсивности и продолжительности, а также от уровня подготовленности атлета. Но все же в каждом конкретном случае можно выделить ведущие механизмы развития утомления, приводящие к снижению работоспособности. У спортсменов часто в основе развития утомления лежать следующие биохимические и физиологические сдвиги, вызываемые тренировочными и соревновательными нагрузками.

2.1. Развитие охранительного торможения.

При возникновении в организме во время мышечной работы биохимических и физиологических сдвигов с различных рецепторов в ЦНС по афферентным нервам поступают соответствующие сигналы. При достижении значительной глубины этих сдвигов в головном мозге формируется охранительное торможение, распространяющееся на двигательные центры, иннервирующие скелетные мышцы. В результате в мотонейронах уменьшается выработка двигательных импульсов, что в итоге приводит к снижению физической работоспособности. Снижение функциональной активности мотонейронов наблюдается также при уменьшении образования в них АТФ. Субъективно охранительное торможение воспринимается как чувство усталости. В зависимости от распространения биохимических и физиологических сдвигов усталость может быть локальной и общей. При локальной усталости биохимические сдвиги наблюдаются в отдельных группах мышц, а общая усталость отражает эти сдвиги возникающие не только в работающих мышцах, но и в других органах и сопровождается снижением работоспособности кардио-респираторной системы, нарушением функционирования мозга и печени, изменением химического состава крови. Это явление сигнализирует о происхождении неблагоприятных сдвигов в организме, появляющихся во время физической работы в мышцах и во внутренних органах.

2.2. Нарушение функций вегетативных и регуляторных систем организма.

В обеспечении мышечной деятельности, наряду с нервной системой, активнейшее участие принимает кардиореспираторная система, отвечающая за доставку кислорода и энергетических субстратов к работающим мышцам, а также за удаление из них продуктов обмена. Поэтому снижение работоспособности сердечно-сосудистой и дыхательной систем, естественно, вносит существенный вклад в развитие утомления. Еще один внутренний орган, способствующий мышечной деятельности, - печень. В печени во время мышечной работы протекают такие важные процессы, как глюкогенез, Р-окисление жирных кислот, кето- генез, глюконеогенез, которые направлены на обеспечение мышц важнейшими источниками энергии: глюкозой и кетоновыми телами. Кроме того, в печени во время мышечной работы осуществляется обезвреживание аммиака путем синтеза мочевины. Поэтому уменьшение функциональной активности этого органа также ведет к снижению работоспособности и развитию утомления. В связи с такой важной ролью печени в обеспечении мышечной деятельности в спортивной практике широкое применение находят гепатопротекторы - фармакологические препараты, улучшающие обменные процессы в печени. При выполнении физической работы, особенно продолжительной, возможно снижение функции надпочечников. В результате уменьшается выделение в кровь гормонов (адреналин, глюкокортикоиды), вызывающих в организме биохимические и функциональные сдвиги, благоприятные для функционирования мышц.

2.3. Исчерпание энергетических резервов.

Как известно, выполнение физической работы сопровождается большими энергозатратами, и поэтому при мышечной деятельности Происходит быстрое исчерпание энергетических субстратов. В спортивной литературе часто используются термины энергетические резервы и доступные источники энергии. Под этим понимается та часть углеводов, жиров и аминокислот, которая может служить источником энергии при выполнении мышечной работы. Такими источниками энергии можно считать мышечный креатинфосфат, который может быть почти полностью использован при интенсивной работе, большую часть мышечного и печеночного гликогена, часть запасов жира, находящихся в жировых депо, а также аминокислоты, которые начинают окисляться при очень продолжительных нагрузках. Энергетическим резервом можно также считать способность организма поддерживать в крови во время выполнения физической работы необходимый уровень глюкозы. Исчерпание энергетических субстратов, несомненно, ведет к снижению выработки в организме АТФ и уменьшению баланса АТФ/АДФ. Снижение этого показателя в нервной системе приводит к нарушениям формирования и передачи нервных импульсов, в том числе управляющих скелетной мускулатурой. Как уже отмечалось, такое нарушение в функционировании нервной системы является одним из механизмов развития охранительного торможения. Уменьшение скорости синтеза АТФ в клетках скелетных мышц и миокарда нарушает сократительную функцию миофибрилл, следствием чего является снижение мощности выполняемой работы.

2.4. Образование и накопление в организме лактата.

Обычно молочная кислота в больших количествах образуется в организме при выполнении физических нагрузок субмаксимальной мощности. Накопление лактата в мышечных клетках существенно влияет на их функционирование. В условиях повышенной кислотности, вызванной нарастанием концентрации лактата, снижается сократительная способность белков, участвующих в мышечной деятельности, уменьшается каталитическая активность белков-ферментов, в том числе АТФазная активность миозина и активность кальциевой АТФазы (кальциевый насос), изменяются свойства мембранных белков, что приводит к повышению проницаемости биологических мембран. Кроме того, накопление лактата в мышечных клетках ведет к набуханию этих клеток вследствие поступления в них воды, что в итоге уменьшает сократительные возможности мышц. Можно также предположить, что избыток лактата внутри миоцитов связывает часть ионов кальция и тем самым ухудшает управление процессами сокращения и расслабления, что особенно сказывается на скоростных свойствах мышцы. 

2.5. Повреждение биологических мембран свободнорадикальным окислением. Незначительная часть кислорода, поступающего из воздуха в организм, превращается в активные формы, называемые свободными радикалами. Свободные радикалы кислорода, обладая высокой химической активностью, вызывают окисление белков, липидов и нуклеиновых кислот. Чаще всего окислению подвергается липидный слой биологических мембран. Такое окисление называется перекисным окислением липидов (ПОЛ). В физиологических условиях свободнорадикальное окисление протекает с низкой скоростью, так как ему противостоит защитная антиоксидантная система организма, предупреждающая накопление свободных радикалов кислорода и ограничивающая тем самым скорость вызываемых ими реакций окисления. Физические нагрузки, свойственные современному спорту, приводят к чрезмерному образованию активных форм кислорода и значительному росту скорости ПОЛ. Так, практически любая спортивная работа протекает в условиях повышенного потребления кислорода, а пересыщение организма (или отдельных органов, или тканей) кислородом способствует появлению свободных радикалов кислорода и интенсификации перекисных процессов. В ациклических видах спорта (особенно в спортивных играх и единоборствах) характер мышечной деятельности резко и многократно меняется. Такие изменения сопровождаются несоответствием между продолжающимся повышенным поступлением кислорода и снижением его потребления митохондриями мышечных клеток. Подобное несоответствие вызывает относительную гипероксию в мышечной ткани, Что, несомненно, приводит к еще большему образованию свободных Радикалов и дальнейшему нарастанию их повреждающего воздействия на биомембраны. К повышению скорости свободнорадикального окисления также приводит ацидоз (повышение кислотности), возникающий у спортсменов вследствие накопления в миоцитах молочной кислоты. И наконец, приближающиеся к пределу функциональных возможностей физические нагрузки современного спорта, его высокая мотивированность и эмоциональность позволяют выявить в деятельности спортсменов многие характерные черты стресса. А стресс и, в частности, стрессорные гормоны оказывают значительное влияние на развитие в организме свободнорадикального окисления. Чрезмерная активация ПОЛ оказывает негативное влияние на мышечную деятельность. Так, повышение проницаемости мембран нервных волокон и саркоплазматического ретикулума миоцитов, вызываемое ПОЛ, затрудняет передачу двигательных нервных импульсов и тем самым снижает сократительные возможности мышцы. Повреждающее воздействие перекисного окисления на цистерны, содержащие ионы кальция, неизбежно приводит к нарушению функции кальциевого насоса и ухудшению релаксационных свойств мышц. При повреждении митохондриальных мембран снижается эффективность окислительного фосфорилирования (тканевого дыхания), что ведет к уменьшению аэробного энергообеспечения мышечной работы. Повышение проницаемости оболочки мышечных клеток - сарколеммы - может привести к потере мышечными клетками многих важных веществ, которые будут уходить из них в кровь и лимфу. Таким образом, в масштабе всего организма активация ПОЛ сказывается на возможностях аэробного энергопроизводства, на сократительных способностях мышц и, следовательно, на работоспособности спортсмена в целом. Все вышесказанное позволяет считать процессы свободнорадикального окисления, и в первую очередь липидов биологических мембран, важнейшим дезадаптационным фактором, обусловливающим развитие утомления и снижение физической работоспособности. 

3. Способы временного преодоления утомления.

Итак, теперь,когда мы знаем основные механизмы утомления, можно дать рекомендации временного отстранения или преодоления утомления. К данным рекомендациям следует относиться осторожно, так как безмерное употребление медикаментов чревато перегрузкой различных органов, поэтому прежде всего помните,что утомление - нормальный процесс и не всегда его нужно предотвращать, только в определенные моменты и стимулировать определенные механизмы, отвечающие за вашу специальную работоспособность!!! 

1- Режим охранительного торможения лучше не трогать, так как его преодоление чревато получением травмы. Этот механизм должен развиваться своевременно.

2- Поддержку кардиореспираторной системы нам обеспечат препараты такие как рибоксин, аспаркам и милдронат и их аналоги. Для поддержки вегетативной системы организма и скорейшего ее восстановления нам помогут препараты стимулирующие основные железы внутренней секреции. Основными гормонами в пауэрлифтинге являются: адреналин,норадреналин,тестостерон. Поэтому используем препараты для улучшения функции желез производящие эти гормоны. Для поддержания нервной системы используем различные ноотропные препараты. Они поспособствуют лучшему и более продолжительному функционированию НС во время тренировки, что даст дополнительные силы для преодоления новых вершин.

3- Во время тренировки не забываем поддерживать уровень питательных веществ в организме.Советуется применять такие вещества как креатин и простые углеводы в жидком виде во время тренировки.

4-Преодолеть закисление организма нам помогут изотонические растворы во время тренировки.

5-В настоящее время для предупреждения утомления и сохранения физической работоспособности развиваемой в рамках форменных(клеточных) повреждений в спортивной практике применяются различные экзогенные средства, способные повышать емкость антиоксидантной системы организма. К ним прежде всего относится токоферол (витамин Е) - естественный антиоксидант организма. На кафедре биохимии СПбГАФК им. П.Ф. Лесгафта было подробно исследовано антиокислительное действие ряда адаптогенных средств (биологически активные напитки «Вента», «Валдай», «Рукитис», препараты биоженьшеня), а также прямого антиоксиданта - тимола. Проведенные эксперименты показали, что применение перечисленных препаратов приводит к снижению интенсивности перекисного окисления липидов при выполнении спортсменами физической работы, повышению спортивной работоспособности.

Поделиться в соц. сетях:
Окт. 18, 2016 #169
Нет сообщений